7.2 WARM-UP: put at top of today's assignment

Simplify. (No decimals.)

$$
\begin{array}{ll}
\text { a. } \sqrt{5 \cdot \sqrt{6}}=\sqrt{\sqrt{30}} & \text { b. } \frac{\sqrt{21}}{\sqrt{3}}=\sqrt{\frac{21}{3}}=\sqrt{7} \\
\text { c. } \frac{\sqrt{5}+\sqrt{6}}{\text { Simplified }} & \text { d. } \sqrt{21}-\sqrt{3}
\end{array}
$$

7.2 WARM-UP: put at top of today's assignment Rationalize each denominator.
e. $\frac{3 \sqrt{6}}{2 \sqrt{6} \sqrt{6}}=\frac{3 \sqrt{6}}{12}=\frac{\sqrt{6}}{4}$
f. $\frac{\sqrt{2} \sqrt{5}}{3 \sqrt{5} \sqrt{5}}=\frac{\sqrt{10}}{15}$
2.6

= O middle term
7.2 WARM-UP: put at top of today's assignment
h. Is $\sin \left(\underset{30^{\circ}}{ }\left(\underset{60^{\circ}}{ }+y\right)=\sin x+\sin y\right.$?

$$
\begin{aligned}
\sin \left(30^{\circ}+60^{\circ}\right) & =\sin 30^{\circ}+\sin 60^{\circ} \\
\sin \left(90^{\circ}\right) & =\frac{1}{2}+\frac{\sqrt{3}}{2} \\
1 & =0.5+0.9 \\
1 & \neq 1.4
\end{aligned}
$$

Notes 7.2: put on bright yellow sheet

 Sum and Difference Identities:$\sin (x \pm y)=\sin x \cdot \cos y \pm \cos x \cdot \sin y$
$\cos (x \pm y)=\cos x \cdot \cos y \mp \sin x \cdot \sin y$
$\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$
Notes: for CSC, SEC, COT
\rightarrow find sin, cos, tan and then flip to find reciprocal
Just use the symbols from the top row highlighted in blue OR the bottom row highlighted in yellow based on the operation in each given problem.

Notes 7.2: put on bright yellow sheet

Notes 7.2: put on bright yellow sheet

if unit
circle

Find the exact value:

$$
\sin (x \pm y)=\sin x \cdot \cos y \oplus \cos x \cdot \sin y
$$

3. $\sin 75^{\circ}$

Just use the symbols from the top row highlighted in
blue since you have addition in the given problem.

$$
\begin{aligned}
& \sin \left(30^{\circ}+45^{\circ}\right)=\sin 30^{\circ} \cos 45^{\circ}+\cos 30^{\circ} \sin 45^{\circ} \\
& =\left(\frac{1}{2} \cdot \frac{\sqrt{2}}{2}\right)+\left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}\right) \\
& =\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4} \\
& =\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

Write as a function of one number, then find its exact value.
15. ${\sin 18^{\circ}}_{x} \cos 27^{\circ}+\cos 18^{\circ} \sin 27^{\circ}=\sin \left(18^{\circ}+27^{\circ}\right)$

$$
=\sin \left(45^{\circ}\right)
$$

$\sin \left(x_{\bar{J}}^{ \pm} y\right)=\sin x \cdot \cos y \underset{J}{ \pm} \cos x \cdot \sin y$ $=\frac{\sqrt{2}}{2}$
$\cos (x)=\cos x \cdot \cos y \sin x \cdot \sin y$

$\theta=$	30°	45°	60°
$\sin \theta$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos \theta$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\tan \theta$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Prove the identity. (Same as verify!)

26. $\cos \left(x-\frac{\pi}{2}\right)=\sin x^{k}$

$$
\begin{gathered}
\cos x\left(\cos \frac{\pi}{2}\right)+\sin x\left(\sin \frac{\pi}{2}\right)=\sin x \\
\cos x \cdot(0)+\sin x(1)=\sin x \\
\sin x=\sin x
\end{gathered}
$$

$\cos (x \pm y)=\cos x \cdot \cos y \mp \sin x \cdot \sin y$

\checkmark CHECK EVEN ANSWERS for 7.2

$\begin{array}{lll}\text { 16. } 0 & \text { 18. } \frac{\sqrt{3}}{3} & \text { 20. }-\frac{1}{2}\end{array}$

